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Introduction
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INTRODUCTION

● Energy Harvesting (EH) systems provide greener alternative to 
self-sustaining devices functioning in a complex environment [1]

● Energy Borrowing strengthens these independent EH systems with the 
incorporation of a secondary (more reliable) power source [2]

● In a dynamic environment, EH arrival and channel conditions are random, 
statistically indeterminable, hence data-driven approaches are essential

● The integration of concepts of utilizing harvested energy and temporary 
borrowing will play significant role in sustainability of low power wireless 
devices
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RELATED WORKS

Reinforcement learning methods are efficiently used in a point-to-point 
energy harvesting communication system to

1. Learn the transmission power allocation policy to maximize the received 
data using SARSA algorithm [1]

2. Formulate a transmission policy to maximize the expected transmitted 
data with Q-Learning methods [2]

3. The actor-critic algorithm [3] is widely used in user scheduling and 
resource allocation and energy management in wireless EH nodes [4]
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MOTIVATION

The discussed systems transmit data if and only if the energy source attached 
with the transmitter possesses a required amount of energy for transmission, 
irrespective of the channel conditions.

In a typical scenario, 

Case I:

Channel Conditions
Available Energy

Transmission

Case II:

Channel Conditions
Available Energy

Transmission

with
borrowing
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CONTRIBUTIONS

Three-fold contribution

1. Introduction of BEAR (Borrowing Energy with Adaptive Rewards)
a) to maximize the throughput over finite time slots
b) to establish an reinforcement learning benchmark for a 
borrowing-aided EH wireless communication system
 

2. Adaptive Rewards and Penalty functions for an efficient learning
 

3. Incorporation of borrowing with adaptive rewards led us to obtain 35.45% 
gain over an EH system without borrowing
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System Model
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SYSTEM MODEL
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ENERGY SCHEDULING PROTOCOL[1]

● Battery Energy Level

● Energy Borrowing Schedule
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ENERGY SCHEDULING PROTOCOL

● Energy Return Schedule

Unreturned Energy
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Problem Definition
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PROBLEM DEFINITION

● Determine the optimal values of       across finite time slots for 
sum throughput to be maximized

● During transmission, 
○ if the requisite amount of energy is not available, 

the source can borrow energy from nearby power grid
to best utilize channel condition.

● Complete pool of “borrowed” energy has to be returned
along with the levied interest.
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PROBLEM DEFINITION

● State-Action Space[1-3]

○ State

○ Action
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OBJECTIVE: SUM THROUGHPUT MAXIMIZATION

● Reward Function

 

where adaptive penalty β

 

● Objective

Sensitivity Parameter
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Proposed Solution
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ACTOR CRITIC ALGORITHM

● Actor (Policy)
 

“decides which action to take”

 

● Critic (Action - Value function)
 

“Tells how good the action was 
(criticizes) and asks to improve 
them”
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Actor Critic Algorithm



ROLE OF ACTOR

● Policy is modeled by Gaussian Distribution[1] 

 

with parameterized mean and standard deviation as

                                                           ,
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ROLE OF CRITIC

● Responsible for action-value function, and
“criticize” the policy chosen by the actor

● Updates itself using temporal difference error δ

● To update critic network, we used backpropagation and stochastic 
gradient descent [1]
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Performance Evaluation
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SUM THROUGHPUT
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UNRETURNED ENERGY
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ENERGY AT EACH TIME SLOT
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AVERAGE Q-VALUE

24



CONCLUSION

● An enhanced  EH  wireless  communication system with borrowing, 
formulates a power allocation  policy  to  optimize  the  harvested  energy  
and  sum throughput  jointly.
 

● Equipped with the concept of adaptive rewards.
 

● The  sensitivity  parameter ε shows  that  there  exists  an  optimal  value  
of ε for throughput  maximization.
 

● The significant  gain  of 35.45% in sum throughput over a non-borrowing 
energy harvesting system. 
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Questions?

Reach out:   hi@anubhavsachan.com
                     twitter.com/anubhav4sachan
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